skip to main content


Search for: All records

Creators/Authors contains: "Gorelov, Vitaly"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The simplest picture of excitons in materials with atomic-like localization of electrons is that of Frenkel excitons, where electrons and holes stay close together, which is associated with a large binding energy. Here, using the example of the layered oxide V2O5, we show how localized charge-transfer excitations combine to form excitons that also have a huge binding energy but, at the same time, a large electron-hole distance, and we explain this seemingly contradictory finding. The anisotropy of the exciton delocalization is determined by the local anisotropy of the structure, whereas the exciton extends orthogonally to the chains formed by the crystal structure. Moreover, we show that the bright exciton goes together with a dark exciton of even larger binding energy and more pronounced anisotropy. These findings are obtained by combining first principles many-body perturbation theory calculations, ellipsometry experiments, and tight binding modelling, leading to very good agreement and a consistent picture. Our explanation is general and can be extended to other materials.

     
    more » « less
  2. We report first‐principles results for the nuclear structure and optical responses of high‐pressure liquid hydrogen along two isotherms in the region of molecular dissociation. We employ density functional theory with the vdW‐DF approximation (vdW) and benchmark the results against existing predictions from Coupled Electron–Ion Monte Carlo (CEIMC). At fixed density and temperature, we find that the pressure obtained from vdW is higher than that from CEIMC by about 10 GPa in the molecular insulating phase and about 20 GPa in the dissociated metallic phase. Molecules are found to be over‐stabilized using vdW, with a slightly shorter bond length and with a stronger resistance to compression. As a consequence, pressure dissociation along isotherms using vdW is more progressive than that computed with CEIMC. Below the critical point, the liquid–liquid phase transition is observed with both theories in the same density region, but the one predicted by vdW has a smaller density discontinuity, i.e. a smaller first‐order character. The optical conductivity computed using Kubo–Greenwood formulation is rather similar for the two systems and reflects the slightly more pronounced molecular character of vdW.

     
    more » « less